Lagrangian and Hamiltonian Formalism on a Quantum Plane

نویسنده

  • M. Lukin
چکیده

We examine the problem of defining Lagrangian and Hamiltonian mechanics for a particle moving on a quantum plane Qq,p. For Lagrangian mechanics, we first define a tangent quantum plane TQq,p spanned by noncommuting particle coordinates and velocities. Using techniques similar to those of Wess and Zumino, we construct two different differential calculi on TQq,p. These two differential calculi can in principle give rise to two different particle dynamics, starting from a single Lagrangian. For Hamiltonian mechanics, we define a phase space T Qq,p spanned by noncommuting particle coordinates and momenta. The commutation relations for the momenta can be determined only after knowing their functional dependence on coordinates and velocities. Thus these commutation relations, as well as the differential calculus on T Qq,p, depend on the initial choice of Lagrangian. We obtain the deformed Hamilton’s equations of motion and the deformed Poisson brackets, and their definitions also depend on our initial choice of Lagrangian. We illustrate these ideas for two sample Lagrangians. The first system we examine corresponds to that of a nonrelativistic particle in a scalar potential. The other Lagrangian we consider is first order in time derivatives and it is invariant under the action of the quantum group SLq(2). For that system, SLq(2) is shown to correspond to a canonical symmetry transformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plane rotations and Hamilton-Dirac mechanics

Canonical formalism for SO(2) is developed. This group can be seen as a toy model of the Hamilton-Dirac mechanics with constraints. The Lagrangian and Hamiltonian are explicitly constructed and their physical interpretation are given. The Euler-Lagrange and Hamiltonian canonical equations coincide with the Lie equations. It is shown that the constraints satisfy CCR. Consistency of the constrain...

متن کامل

A Note on Symplectic Algorithms

1. It is well known that the symplectic algorithms [1][2] for the finite dimensional Hamiltonian systems are very powerful and successful in numerical calculations in comparison with other various non-symplectic computational schemes since the symplectic schemes preserve the symplectic structure in certain sense. On the other hand, the Lagrangian formalism is quie useful for the Hanmiltonian sy...

متن کامل

Noncommutative Classical and Quantum Mechanics for Quadratic Lagrangians (Hamiltonians)

We consider classical and quantum mechanics for an extended Heisenberg algebra with additional canonical commutation relations for position and momentum coordinates. In our approach this additional noncommutativity is removed from the algebra by linear transformation of coordinates and transmitted to the Hamiltonian (Lagrangian). Since linear transformations do not change the quadratic form of ...

متن کامل

On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator

Using the modified PrelleSinger approach, we point out that explicit time independent first integrals can be identified for the damped linear harmonic oscillator in different parameter regimes. Using these constants of motion, an appropriate Lagrangian and Hamiltonian formalism is developed and the resultant canonical equations are shown to lead to the standard dynamical description. Suitable c...

متن کامل

1 Self dual models and mass generation in planar field theory

We analyse in three space-time dimensions, the connection between abelian self dual vector doublets and their counterparts containing both an explicit mass and a topological mass. Their correspondence is established in the lagrangian formalism using an operator approach as well as a path integral approach. A canonical hamiltonian analysis is presented, which also shows the equivalence with the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993